Open Access Peer-Reviewed
Artigo de Revisão

Ativação de complemento em síndrome urêmica hemolítica atípica e crise renal por esclerodermia: uma análise crítica da fisiopatologia

Complement activation in atypical hemolytic uremic syndrome and scleroderma renal crisis: a critical analysis of pathophysiology

Roman Zuckerman; Arif Asif; Eric J. Costanzo; Tushar Vachharajani

DOI: 10.1590/2175-8239-JBN-3807

RESUMO:

A esclerodermia é uma doença autoimune que afeta múltiplos sistemas. Embora os mecanismos fisiopatológicos que regem o desenvolvimento da esclerodermia sejam relativamente pouco compreendidos, os avanços em nossa compreensão do sistema do complemento estão esclarecendo o papel das vias do complemento no desenvolvimento da síndrome urêmica hemolítica atípica e da crise renal da esclerodermia. As abundantes semelhanças em sua apresentação, bem como o curso clínico, estão aumentando a possibilidade de uma patogênese subjacente comum. Relatórios recentes estão enfatizando que as vias de complemento parecem ser o link unificador. Este artigo analisa o papel do sistema do complemento no desenvolvimento da síndrome urêmica hemolítica atípica e da crise renal na esclerodermia, e exige maior conscientização para com o desenvolvimento da angiopatia trombótica em pacientes com esclerodermia.

Palavras-chave:
Ativação de Complemento; Esclerodermia, Sistêmica; Lesão renal aguda.

ABSTRACT:

Scleroderma is an autoimmune disease that affects multiple systems. While pathophysiologic mechanisms governing the development of scleroderma are relatively poorly understood, advances in our understanding of the complement system are clarifying the role of complement pathways in the development of atypical hemolytic uremic syndrome and scleroderma renal crisis. The abundant similarities in their presentation as well as the clinical course are raising the possibility of a common underlying pathogenesis. Recent reports are emphasizing that complement pathways appear to be the unifying link. This article reviews the role of complement system in the development of atypical hemolytic uremic syndrome and scleroderma renal crisis, and calls for heightened awareness to the development of thrombotic angiopathy in patients with scleroderma.

Keywords:
Complement Activation; Scleroderma, Systemic; Acute Kidney Injury.

Citação: Zuckerman R, Asif A, Costanzo EJ, Vachharajani T. Ativação de complemento em síndrome urêmica hemolítica atípica e crise renal por esclerodermia: uma análise crítica da fisiopatologia. Braz. J. Nephrol. (J. Bras. Nefrol.) 40(1):77. doi:10.1590/2175-8239-JBN-3807
Recebido: May 12 2017; Aceito: September 09 2017

INTRODUÇÃO

A esclerose sistêmica (ES), ou esclerodermia, é uma doença heterogênea autoimune envolvendo múltiplos sistemas e classicamente dividida nas formas Limitada, Difusa e sobrepostas.1 Três distintos mecanismos fisiopatológicos continuam a dominar o processo da doença. Estes incluem: 1) lesão vascular levando à liberação de mediadores vasoconstritores e hipóxia tecidual, 2) imunogenicidade culminando na produção de anticorpos e 3) disfunção de fibroblastos, resultando em deposição aumentada de matriz extracelular.2-16 Algumas características e manifestações da ES são espessamento da pele, fenômeno de Raynaud, úlceras digitais, hipertensão arterial pulmonar (HAP), doença pulmonar intersticial (DPI) e doença renal. Enquanto HAP e DPI são causas importantes de morte em pacientes com ES, relatos recentes enfatizam o desenvolvimento de microangiopatia trombótica (MAT) com a mortalidade resultante da mesma (Tabela 1).4,11

Tabela 1. Pacientes em crise renal por esclerodermia com microangiopatia trombótica
Referência nº Idade/gênero Plasmaterapia Eculizumab DRT Óbito Diagnóstico
49 48 F Sim Não Sim Não SHU/PTT
58 35 F Sim Não Não Não PTT
52 73 M Não Não Sim Não SHU
53 48 F Não Não Sim Sim SHU
59 31 F Sim Não Sim Sim PTT
47 61 F Não Não Sim Não SHU
61 32 F Sim Não Sim Sim PTT
55 58 M Sim Não Sim Sim SHU
41 46 F Sim Sim Não Não SHUa
40 28 F Não Sim Sim Sim SHUa

ESCLERODERMIA E MICROANGIOPATIA TROMBÓTICA

As MAT representam um grupo de distúrbios caracterizados por trombose microvascular generalizada, trombocitopenia e anemia hemolítica microangiopática (AHM).17 As MAT são tradicionalmente classificadas em púrpura trombocitopênica trombótica (PTT), síndrome hemolítico-urêmica atípica (SHUa) e SHU associada à toxina de Shiga.

Em geral, a SHU associada à toxina de Shiga ocorre secundário à infecção com sorotipos de Escherichia coli 0157: H7, 0111: H8, 0103: H2, 0123, 026 ou outros que produzem toxina do tipo Shiga. Esta forma de MAT não está associada à ES e está além do escopo deste artigo. No entanto, tanto a SHUa como a TTP foram relatadas com ES.4,11,18-21 A TTP é causada pela deficiência de ADAMTS13 enquanto o SHUa resulta de uma ativação descontrolada da via alternativa do sistema do complemento.22,23 Histologicamente, na biópsia renal, a SHUa é indistinguível da SHU causada por bactérias produtoras de toxinas ou PTT. Em casos agudos, os trombos são identificados dentro dos capilares glomerulares, arteríolas e artérias, e são acompanhados de inchaço ou desnudamento das células endoteliais. Ao longo do tempo, há espessamento de paredes capilares glomerulares (duplo contorno), afrouxamento da arquitetura mesangial (mesangiólise) causada pelo acúmulo de fibrina e fibrinogênio de proteínas plasmáticas e pelo surgimento do padrão de lesão membranoproliferativa.24

A desregulação da via alternativa do sistema do complemento, que leva à sua ativação descontrolada, resulta em SHUa.22-27 O sistema do complemento é uma das primeiras defesas do sistema imunológico a ser mobilizado contra um patógeno. As proteínas do complemento são produzidas no fígado e estão presentes no sangue, linfa e fluidos extracelulares. As três vias do sistema do complemento (clássico, lecitina e alternativa) produzem complexos de protease denominados convertases C3 e C5 que se clivam C3 e C5, respectivamente, levando ao complexo ataque de membrana.23 A hidrólise de C3 no plasma inicia a via alternativa, levando à deposição de C3b em praticamente todas as superfícies expostas ao plasma.23 A ativação do complemento é controlada por vários reguladores de membrana e de fase fluida.28 Os fatores B, D e C3 participam da geração da C3 convertase da via alternativa (C3bBb), que é estabilizada pelo fator P (properdina). A clivagem da C3 por convertase C3 e subsequente clivagem de C5 pela C5 convertase resulta na formação de C5a e C5b. O último participa na montagem do complexo de ataque de membrana (MAC; C5b-9, terminal solúvel do complexo do complemento (TSCC). O MAC medeia a ativação, lesão ou lise das células-alvo de forma dose-dependente. A via alternativa do sistema do complemento é constitutivamente ativa e sua atividade é mantida sob controle por vários reguladores do complemento, solúveis e ligados à membrana.24 As proteínas comuns e solúveis reguladoras do complemento incluem fator I, fator H e proteína de ligação C4.22-24 Da mesma forma, os reguladores do complemento também existem na superfície das células, e incluem a proteína do cofator de membrana (PCM), o fator de aceleração da decomposição (FAD) e o regulador do complemento 1 (RC1) etc.24 Mutações nestas proteínas reguladoras levam a uma ativação descontrolada do sistema do complemento, causando lesão endotelial e resultando em SHUa. De fato, as anormalidades genéticas nas proteínas do sistema do complemento foram documentadas tanto nas formas familiares e esporádicas da SHUa.25 Mutações múltiplas em fatores que regulam a via alternativa do complemento são encontradas em 40-60% dos pacientes com SHUa.26,27

Em termos simples, são necessários três elementos para se ter um alto índice de suspeita de SHUa. Estes incluem: trombocitopenia, anemia hemolítica microangiopática e lesão de órgão alvo.22 A trombocitopenia com contagem de plaquetas < 150,000/µL ou uma redução de 25% a partir do valor basal, hemoglobina abaixo de 10 g/dL, hemólise intravascular com LDH elevado e redução da haptoglobina e esquistócitos no esfregaço periférico, todos ajudam no diagnóstico. O nível de complemento C3 pode ser reduzido com concentrações normais de C4, bem como complexo C5a e C5b-9 elevados.24 Estudos recentes demonstraram que os níveis de depósitos complexos C5b-9 ligados à membrana em células endoteliais microvasculares humanas estão aumentados em pacientes com SHUa e podem ser utilizados como marcador para a ativação de processos biológicos.29,30 No entanto, esses achados não são nem sensíveis nem específicos para o diagnóstico, e têm valor prognóstico limitado, com níveis reduzidos de C3 encontrados apenas em 30-50% dos pacientes com determinadas mutações no complemento.25 O dano ao órgão final (rim, cérebro, coração, trato gastrointestinal) também aumenta a probabilidade do diagnóstico. Finalmente, a ADAMTS13 ajuda a excluir o diagnóstico de PTT. Embora importante, no momento, o teste genético para estabelecer o diagnóstico de SHUa não é obrigatório, já que apenas 50 a 60% das mutações genéticas são atualmente conhecidas.25-27

O PAPEL DO COMPLEMENTO NA ESCLERODERMIA

Poderia o sistema do complemento estar envolvido na patogênese do ES? As proteínas do complemento têm sido estudadas em relação à ES há mais de 30 anos.31-37 Estudos apontaram a ativação da via clássica do sistema do complemento em pacientes com ES difusa.31-34 Estudos recentes demonstraram hipocomplementemia em pacientes com o tipo sobreposto da ES.35-37 Um estudo genético de pacientes com ARN + polimerase III (ARA +) que desenvolveram crise renal de esclerodermia (CRE) mostrou uma forte associação com o sistema do complemento.15 Batal et al. demonstrou claramente os depósitos de C4d (um produto clássico de degradação da via do complemento) em pacientes com CRE, especialmente naqueles com piores resultados (morte ou necessidade de diálise ou transplante).38 Muito recentemente, um estudo sueco demonstrou que os pacientes com CRE apresentaram níveis mais baixos de C3, secundário do fator B para a sobreativação da via alternativa.39 No entanto, os níveis séricos de CCTs foram menores em indivíduos com CRE.39 Este é um achado confundente, pois se esperaria encontrar níveis aumentados durante os estágios iniciais da fase aguda da crise renal. Um dos motivos para a discrepância pode ser o momento real e o estágio da fase aguda em relação ao tempo da coleta da amostra. Além disso, os pesquisadores não mediram a quantidade de deposição de MAC na superfície das células. Uma possível explicação para baixo CCTs também pode ser sua remoção rápida da circulação e deposição imediata a nível tecidual. No entanto, um relato de caso de um paciente com CRE demonstrou um nível sérico elevado de CCTs (juntamente com níveis diminuídos de C3 e C4).40 Este paciente foi tratado com eculizumab, atingindo remissão hematológica. Infelizmente, o paciente morreu 8 semanas depois, devido a uma nova insuficiência cardíaca.40 Outro paciente com síndrome de esclerodermia de sobreposição (positivo para anticorpos PM-Scl) apresentou insuficiência renal aguda, trombocitopenia e anemia hemolítica microangiopática.41 Ela foi inicialmente tratada com plasmaferese, com um diagnóstico presumido de PTT. Por causa de uma completa falta de melhora, foi considerado o diagnóstico de SHUa. A plasmaferese foi interrompida e a paciente foi tratada com eculizumab com resolução completa da trombocitopenia e anemia hemolítica microangiopática, e recuperação significativa da função renal.41

Vale a pena explorar a indução de trombose/microtrombose envolvendo células endoteliais, moléculas de adesão, bem como a protrombinase. C5a é um potente gatilho de inflamação, responsável pela expressão do fator tecidual (FT) em células endoteliais, monócitos e neutrófilos. O FT, por sua vez, permite a formação do complexo de protrombinase. A ativação adicional do fator de coagulação II (protrombina) gera pequena quantidade de trombina (IIa). A trombina induz a ativação, adesão e agregação de plaquetas. As plaquetas estão envolvidas na ativação do complemento ao cortar C3 em seus componentes (C3a e C3Bb). O bloqueio da clivagem de C5 em C5a e C5b pelo eculizumab impede a formação do MAC e interrompe o circuito de amplificação.42

As células endoteliais parecem ser a plataforma comum tanto para a SHUa como para a esclerodermia. Essas células são continuamente expostas às ações de produtos biologicamente ativos do sistema do complemento.43 Se é a ativação descontrolada da via alternativa (devido a mutações das proteínas reguladoras) ou a ativação da via clássica (devido a auto-anticorpos na esclerodermia), a geração do complexo terminal C5b-C9 depositado em células endoteliais participa diretamente da ativação da célula endotelial microvascular 1 humana (HMEC-1) através do aumento da expressão da molécula solúvel de adesão de células vasculares 1 (sVCAM-1) e do fator tecidual (TF).22-24,31-34,40,41 A lesão de HMEC-1 é demonstrada pela liberação de trombomodulina das células danificadas.44 Além disso, induz a secreção de multímeros do fator de von Willebrand e estimula a protrombinase. A ativação direta das plaquetas também é desencadeada pela retração celular e matriz protrombótica subjacente exposta, resultando em microtrombose.45 Esses processos patológicos levam a lesão de órgão alvo (Tabela 1).46-62

CONCLUSÃO

As abundantes semelhanças na apresentação, bem como o curso clínico da crise renal da esclerodermia e a SHUa levantam uma necessidade de saber se existe uma patogênese comum. As vias do complemento parecem ser o link unificador. A ativação e lesão do endotélio devido à estimulação persistente pelo sistema do complemento cria um laço patológico responsável pela microangiopatia trombótica e injúria do órgão alvo. Vários relatórios mostraram que o eculizumab foi eficaz no bloqueio de CCTs em pacientes com crise renal por esclerodermia que apresentaram sintomas parecidos com a SHUa. Estudos futuros envolvendo pacientes com SHUa são necessários para elucidar a patogênese da esclerodermia com microangiopatia trombótica.

REFERÊNCIAS

LeRoy EC, Black C, Fleischmajer R, Jablonska S, Krieg T, Medsger TA Jr, et al. Scleroderma (systemic sclerosis): classification, subsets and pathogenesis. J Rheumatol 1988;15:202-5.
Wollheim FA. Classification of systemic sclerosis. Visions and reality. Rheumatology (Oxford) 2005;44:1212-6.
Steen VD. Scleroderma renal crisis. Rheum Dis Clin North Am 2003;29:315-33.
Penn H, Howie AJ, Kingdon EJ, Bunn CC, Stratton RJ, Black CM, et al. Scleroderma renal crisis: patient characteristics and long-term outcomes. QJM 2007;100:485-94.
Hudson M, Baron M, Tatibouet S, Furst DE, Khanna D; International Scleroderma Renal Crisis Study Investigators. Exposure to ACE inhibitors prior to the onset of scleroderma renal crisis-results from the International Scleroderma Renal Crisis Survey. Semin Arthritis Rheum 2014;43:666-72.
Steen VD, Costantino JP, Shapiro AP, Medsger TA Jr. Outcome of renal crisis in systemic sclerosis: relation to availability of angiotensin converting enzyme (ACE) inhibitors. Ann Intern Med 1990;113:352-7.
Shanmugam VK, Steen VD. Renal disease in scleroderma: an update on evaluation, risk stratification, pathogenesis and management. Curr Opin Rheumatol 2012;24:669-76.
Traub YM, Shapiro AP, Rodnan GP, Medsger TA, McDonald RH Jr, Steen VD, et al. Hypertension and renal failure (scleroderma renal crisis) in progressive systemic sclerosis. Review of a 25-year experience with 68 cases. Medicine (Baltimore) 1983;62:335-52.
Guillevin L, Bérezné A, Seror R, Teixeira L, Pourrat J, Mahr A, et al. Scleroderma renal crisis: a retrospective multicentre study on 91 patients and 427 controls. Rheumatology (Oxford) 2012;51:460-7.
Steen VD, Medsger TA. Changes in causes of death in systemic sclerosis, 1972-2002. Ann Rheum Dis 2007;66:940-4.
Teixeira L, Mouthon L, Mahr A, Berezné A, Agard C, Mehrenberger M, et al.; Group Français de Recherche sur le Sclérodermie (GFRS). Mortality and risk factors of scleroderma renal crisis: a French retrospective study of 50 patients. Ann Rheum Dis 2008;67:110-6.
Walker JG, Ahern MJ, Smith MD, Coleman M, Pile K, Rischmueller M, et al. Scleroderma renal crisis: poor outcome despite aggressive antihypertensive treatment. Intern Med J 2003;33:216-20.
Lopez-Ovejero JA, Saal SD, D''Angelo WA, Cheigh JS, Stenzel KH, Laragh JH. Reversal of vascular and renal crises of scleroderma by oral angiotensin-converting-enzyme blockade. N Eng J Med 1979;300:1417-9.
Steen VD. Autoantibodies in systemic sclerosis. Semin Arthritis Rheum 2005;35:35-42.
Guerra SG, Fonseca C, Nikhtyanova SI, Stern E, Abraham DJ, Burns A, et al. Defining genetic risk for scleroderma renal crisis: a genome-wide analysis of anti-RNA polymerase antibody-positive systemic sclerosis. Rheumatology 2015;54:i159.
Bunn CC, Denton CP, Shi-Wen X, Knight C, Black CM. Anti-RNA polymerases and other autoantibody specificities in systemic sclerosis. Br J Rheumatol 1998;37:15-20.
Moake JL. Thrombotic microangiopathies. N Engl J Med 2002;347:589-600.
Woodworth TG, Suliman YA, Li W, Furst DE, Clements P. Scleroderma renal crisis and renal involvement in systemic sclerosis. Nat Rev Nephrol 2016;12:678-91.
Abudiab M, Krause ML, Fidler ME, Nath KA, Norby SM. Differentiating scleroderma renal crisis from other causes of thrombotic microangiopathy in a postpartum patient. Clin Nephrol 2013;80:293-7.
Yamada Y, Suzuki K, Nobata H, Kawai H, Wakamatsu R, Miura N, et al. Gemcitabine-induced hemolytic uremic syndrome mimicking scleroderma renal crisis presenting with Raynaud''s phenomenon, positive antinuclear antibodies and hypertensive emergency. Intern Med 2014;53:445-8.
Keeler E, Fioravanti G, Samuel B, Longo S. Scleroderma renal crisis or thrombotic thrombocytopenic purpura: seeing through the masquerade. Lab Med 2015;46:e39-44.
Asif A, Nayer A, Haas CS. Atypical hemolytic uremic syndrome in the setting of complement-amplifying conditions: case reports and a review of the evidence for treatment with eculizumab. J Nephrol 2017;30:347-62.
Noris M, Remuzzi G. Atypical hemolytic-uremic syndrome. N Engl J Med 2009;361:1676-87.
Nayer A, Asif A. Atypical Hemolytic-Uremic Syndrome: A Clinical Review. Am J Ther 2016;23:e151-8.
Noris M, Caprioli J, Bresin E, Mossali C, Pianetti G, Gamba S, et al. Relative role of genetic complement abnormalities in sporadic and familial aHUS and their impact on clinical phenotype. Clin J Am Soc Nephrol 2010;5:1844-59.
Noris M, Brioschi S, Caprioli J, Todeschini M, Bresin E, Porrati F, et al.; International Registry of Recurrent and Familial HUS/TTP. Familial haemolytic uraemic syndrome and an MCP mutation. Lancet 2003;362:1542-7.
Bresin E, Rurali E, Caprioli J, Sanchez-Corral P, Fremeaux-Bacchi V, Rodriguez de Cordoba S, et al.; European Working Party on Complement Genetics in Renal Diseases. Combined complement gene mutations in atypical hemolytic uremic syndrome influence clinical phenotype. J Am Soc Nephrol 2013;24:475-86.
Devaux P, Christiansen D, Fontaine M, Gerlier D. Control of C3b and C5b deposition by CD46 (membrane cofactor protein) after alternative but not classical complement activation. Eur J Immunol 1999;29:815-22.
Cataland SR, Holers VM, Geyer S, Yang S, Wu HM. Biomarkers of terminal complement activation confirm the diagnosis of aHUS and differentiate aHUS from TTP. Blood 2014;123:3733-8.
Noris M, Galbusera M, Gastoldi S, Macor P, Banterla F, Bresin E, et al. Dynamics of complement activation in aHUS and how to monitor eculizumab therapy. Blood 2014;124:1715-26.
Ghossein C, Varga J, Fenves AZ. Recent Developments in the Classification, Evaluation, Pathophysiology, and Management of Scleroderma Renal Crisis. Curr Rheumatol Rep 2016;18:5.
Senaldi G, Lupoli S, Vergani D, Black CM. Activation of the complement system in systemic sclerosis. Relationship to clinical severity. Arthritis Rheum 1989;32:1262-7.
Siminovitch K, Klein M, Pruzanski W, Wilkinson S, Lee P, Yoon SJ, et al. Circulating immune complexes in patients with progressive systemic sclerosis. Arthritis Rheum 1982;25:1174-9.
Swierczynska Z, Rdultowska H, Blaszczyk M, Jablonska S, Luft S. Circulating immune complexes in systemic scleroderma. Immunol Commun 1984;13:433-8.
Hudson M, Walker JG, Fritzler M, Taillefer S, Baron M. Hypocomplementemia in systemic sclerosis--clinical and serological correlations. J Rheumatol 2007;34:2218-23.
Esposito J, Brown Z, Stevens W, Sahhar J, Rabusa C, Zochling J, et al. The association of low complement with disease activity in systemic sclerosis: a prospective cohort study. Arthritis Res Ther 2016;18:246.
Cuomo G, Abignano G, Ruocco L, Vettori S, Valentini G. [Hypocomplementemia in systemic sclerosis]. Reumatismo 2008;60:268-73. Italian.
Batal I, Domsic RT, Shafer A, Medsger TA, Kiss LP, Randhawa P, et al. Renal biopsy findings predicting outcome in scleroderma renal crisis. Hum Pathol 2009;40:332-40.
Okrój M, Johansson M, Saxne T, Blom AM, Hesselstrand R. Analysis of complement biomarkers in systemic sclerosis indicates a distinct pattern in scleroderma renal crisis. Arthritis Res Ther 2016;18:267.
Devresse A, Aydin S, Le Quintrec M, Demoulin N, Stordeur P, Lambert C, et al. Complement activation and effect of eculizumab in scleroderma renal crisis. Medicine (Baltimore) 2016;95:e4459.
Thomas CP, Nester CM, Phan AC, Sharma M, Steele AL, Lenert PS. Eculizumab for rescue of thrombotic microangiopathy in PM-Scl antibody-positive autoimmune overlap syndrome. Clin Kidney J 2015;8:698-701.
Nayer A, Asif A. Atypical hemolytic-uremic syndrome: the interplay between complements and the coagulation system. Iran J Kidney Dis 2013;7:340-5.
Tedesco F, Pausa M, Nardon E, Introna M, Mantovani A, Dobrina A. The cytolytically inactive terminal complement complex activates endothelial cells to express adhesion molecules and tissue factor procoagulant activity. J Exp Med 1997;185:1619-27.
Cofiell R, Kukreja A, Bedard K, Yan Y, Mickle AP, Ogawa M, et al. Eculizumab reduces complement activation, inflammation, endothelial damage, thrombosis, and renal injury markers in aHUS. Blood 2015;125:3253-62.
Noris M, Remuzzi G. Glomerular Diseases Dependent on Complement Activation, Including Atypical Hemolytic Uremic Syndrome, Membranoproliferative Glomerulonephritis, and C3 Glomerulopathy: Core Curriculum 2015. Am J Kidney Dis 2015;66:359-75.
Mouthon L, Mehrenberger M, Teixeira L, Fakhouri F, Bérezné A, Guillevin L, et al. Endothelin-1 expression in scleroderma renal crisis. Hum Pathol 2011;42:95-102.
Yamanaka K, Mizutani H, Hashimoto K, Nishii M, Shimizu M. Scleroderma renal crisis complicated by hemolytic uremic syndrome in a case of elderly onset systemic sclerosis. J Dermatol 1997;24:184-8.
Ishizu A, Fukaya S, Tomaru U, Katsumata K, Suzuki A, Umemoto Y, et al. Acute Renal Failure due to Thrombotic Microangiopathy in Patient with Scleroderma: Autopsy Case Report. Ann Vasc Dis 2012;5:458-61.
Ricker DM, Sharma HM, Nahman NS Jr. Acute renal failure with glomerular thrombosis in a patient with chronic scleroderma. Am J Kidney Dis 1989;14:524-6.
Nanke Y, Akama H, Yamanaka H, Hara M, Kamatani N. Progressive appearance of overlap syndrome together with autoantibodies in a patient with fatal thrombotic microangiopathy. Am J Med Sci 2000;320:348-51.
Manadan AM, Harris C, Block JA. Thrombotic thrombocytopenic purpura in the setting of systemic sclerosis. Semin Arthritis Rheum 2005;34:683-8.
Meyrier A, Becquemont L, Weill B, Callard P, Rainfray M. Hemolytic-uremic syndrome with anticardiolipin antibodies revealing paraneoplastic systemic scleroderma. Nephron 1991;59:493-6.
Zachariae H, Hansen HE, Olsen TS. Hemolytic uremic syndrome in a patient with systemic sclerosis treated with cyclosporin A. Acta Derm Venereol 1992;72:307-9.
Chen WS, Young AH, Wang HP, Huang DF. Hemolytic uremic syndrome with ischemic glomerulonephropathy and obliterative vasculopathy in a systemic sclerosis patient treated with cyclosporine-A. Rheumatol Int 2009;29:821-4.
Haviv YS, Safadi R. Normotensive scleroderma renal crisis: case report and review of the literature. Ren Fail 1998;20:733-6.
Miller A, Ryan PF, Dowling JP. Vasculitis and thrombotic thrombocytopenic purpura in a patient with limited scleroderma. J Rheumatol 1997;24:598-600.
Barton JC, Saway DA, Blackburn WD, Fallahi S, Jakes JT, Alarcón GS. Thrombotic thrombocytopenic purpura in systemic sclerosis. J Rheumatol 1989;16:1400-1.
Cookson S, Krueger ML, Bennett RM. Fulminant thrombotic thrombocytopenic purpura in a patient with the limited form of scleroderma: successful outcome using plasma exchange. J Rheumatol 1991;18:900-1.
Bhardwaj A, Badesha PS. Seizures in a patient with diffuse scleroderma. Postgrad Med J 1995;71:687-9.
Kfoury Baz EM, Mahfouz RA, Masri AF, Jamaleddine GW. Thrombotic thrombocytopenic purpura in a case of scleroderma renal crisis treated with twice-daily therapeutic plasma exchange. Ren Fail 2001;23:737-42.
Kapur A, Ballou SP, Renston JP, Luna E, Chung-Park M. Recurrent acute scleroderma renal crisis complicated by thrombotic thrombocytopenic purpura. J Rheumatol 1997;24:2469-72.
Towheed TE, Anastassiades TP, Ford SE, Ford PM, Lee P. Thrombotic thrombocytopenic purpura as an initial presentation of limited systemic sclerosis. J Rheumatol 1999;26:1613-6.

© 2018 All rights reserved